ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Martin Victor Polley
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 557-567
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33678
Articles are hosted by Taylor and Francis Online.
It is widely experienced that operation with a low primary coolant pHT leads to heavy deposition on fuel-pin cladding in pressurized water reactors (PWRs). This is thought to be due principally to solubilities of corrosion products exhibiting negative temperature dependencies at low coolant pHT, leading to precipitation from the solution onto core surfaces. Solubilities also increase at low pHT values and this may be an additional reason for the increased deposition. Particulate deposition may also depend on coolant pHT. Operation at low coolant pHT may thus cause increased corrosion product activity transport, leading to higher dose rates around the primary circuit. The possible correlation between low pHT operation and steam generator channel head dose rates was investigated, using detailed data from nine Westinghouse PWRs. The coolant chemistry was quantified by calculating both the percentage of operating time at low pHT and a numerical “precipitation index” in order to establish the extent of operation below that coolant pHT above which little core crud deposition is expected. Time averaged pH’s were also calculated for each cycle. End-of-cycle dose rates were plotted against these coolant chemistry parameters on a plantby-plant basis and statistical tests were applied following linear regression analysis. Positive correlations were obtained and it was found that, for the limited number of plants in the survey, these correlations were between the categories “significant” and “probably significant” for cycle 1 and cycle 2 data.