ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Richard F. Farman, Charles E. Hendrix, Jason Chao
Nuclear Technology | Volume 70 | Number 1 | July 1985 | Pages 84-93
Technical Paper | Third International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33666
Articles are hosted by Taylor and Francis Online.
Two simulations of pressurized water reactor (PWR) anticipated transient without scram (ATWS) sequences were performed in the loss-of-fluid test (LOFT) facility. These were designated as tests L9-3 and L9-4. Test L9-3 is a loss-of-feedwater transient, while L9-4 simulates an ATWS accompanied by loss of off-site power. In the latter case, the main steam valve and primary circulation pumps are tripped at the beginning of the experiment, along with the steam generator feedwater flow. The behavior of these experiments was analyzed with the RETRAN-02 computer code in order to evaluate the capability of the code to predict A TWS behavior against the experimental evidence exhibited by LOFT. The complex sequence of events, which occurs in L9-3, creates a difficult system modeling problem. The primary influence on the entire system response is the steam generator heat transfer rate (given core power as a boundary condition). Results of the analysis demonstrate how the course of the computer calculation is influenced by the steam generator model and its initial conditions. Test L9-4 does not contain the thermal-hydraulic complexity of test L9-3 due to the immediate isolation of the steam generator. Nonetheless, it reinforces the general conclusion that RETRAN-02 will produce an adequate simulation of PWR ATWS behavior if the initial and boundary conditions are completely defined.