ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
A. R. Wazzan, A. Villalobos, D. Okrent
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 285-289
Technical Note | Fission Reactor | doi.org/10.13182/NT85-A33654
Articles are hosted by Taylor and Francis Online.
A computer code developed earlier by Villalobos et al. to predict fission gas behavior in uranium oxide fuel under steady-state irradiation conditions and where bubble gas resolution is represented with the single knock-on model (SKO) is modified to replace the SKO model with the complete bubble destruction model (CBD). The CBD model required that bubble nucleation be included in the present analysis. The revised code is used to compute gas release and total swelling. Both are found to be insensitive to whether they are obtained with the CBD or the SKO option. This is mainly because at low atomic percent of burnup, total swelling is dominated by the grain-edge bubble gas contribution, and release is dependent on the formation of a complete grainface/grain-edge tunnel network—factors that are not much affected by either the SKO or CBD models. At higher atomic percent of burnup, intragranular swelling, which can be sensitive to the resolution model, contributes more to swelling. But even then, computations at 1.0 at.% burnup suggest total swelling will continue to be dominated by grain-edge gas. These results suggest that in modeling swelling and release in irradiated uranium dioxide fuel, the simpler SKO resolution model is satisfactory.