ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Seichi Sato, Hirotaka Furuya, Yuji Nishino, Masayasu Sugisaki
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 235-242
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33647
Articles are hosted by Taylor and Francis Online.
Thermal conductivity of simulated high-level radioactive waste glass was measured by a radial heat flow technique at temperatures from 300 to 1250 K, using two types of cell. Below glass transition temperature Tg (720 K), the thermal conductivity was determined to be In an attempt to clarify the mechanism of heat transfer in waste glass, the radiative thermal conductivity was determined using the absorption coefficient of photons in the waste glass. The measured thermal conductivity was compared with the radiative thermal conductivity and behavior of heat capacity. It was determined that (a) at temperatures above 1000 or 1100K, thermal conductivity included thermal radiation (radiative conduction) by a factor of 0.1 to 0.2 and (b) at temperatures above 1200 K, thermal conductivity seemed to be influenced by the scattering of photons by immiscible phases such as pores and inclusions.