ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
H. Mogard, H. Knaab, U. Bergenlid, G. Lysell
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 236-242
Technical Note | Nuclear Fuel | doi.org/10.13182/NT85-A33634
Articles are hosted by Taylor and Francis Online.
The Studsvik Demo-Ramp-II Project was an internationally sponsored research project designed to investigate the pellet/clad interaction phenomenon during short time power transients. The project included eight fuel rod segments of standard boiling water reactor design, which were operated to burnups ranging from 25 to 29 MWd/kg uranium in a power reactor. The rods were subsequently subjected to power ramp or transient tests in the Studsvik R2 reactor. The failure threshold (where cladding failure and fission product release occur after a sufficient time) was determined from two ramp tests to be ∼40 kW/m for the present rods. The six remaining rods were then subjected to short power transients to heat generation rates up to 48 kW/m. No cladding failures were detected after the transients, by activity release or examination by means of neutron radiography. The unexpected result was, however, that a large number of nonpenetrating (incipient) cladding cracks were formed very rapidly, within a minute. The crack depths, measured by scanning electron microscopy, ranged from 10 to 50% of the cladding wall thickness.