ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Richard W. Smith, Gary S. Was
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 198-209
Nuclear Fuel | doi.org/10.13182/NT85-A33631
Articles are hosted by Taylor and Francis Online.
The FCODE-BETA/SS code, based on the Electric Power Research Institute’s FCODE-BETA, is constructed to model the thermal-mechanical performance of Type 304 stainless steel clad pressurized water reactor fuel rods. Specifically, thermal expansion, thermal conductivity, irradiation creep, temperature-dependent material parameters and gap conductance for Type 304 stainless steel clad fuel rods are modeled. FCODEBETA/SS is benchmarked against end-oflife fission gas release and creep strain data from Connecticut Yankee fuel rods. Benchmarking results on key performance variables are comparable to those of FCODEBETA and COMETHE. Using FCODE-BETA/SS to compare the performance of Type 304 stainless steel and Zircaloy clad fuel over a common power history reveals that Type 304 stainless steel clad rods display higher fuel temperatures, wider gaps, and longer times to gap closure than Zircaloy clad rods. The stainless steel cladding spends only a small fraction of life in a state of tensile stress at the ridge, but the magnitudes of these ridge stresses are significantly greater than those found in Zircaloy rods. Nevertheless, the thermal performance of the two rod types is very similar.