ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. Kohli, D. Stahl, V. Pasupathi, A. B. Johnson, Jr., E. R. Gilbert
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 186-197
Nuclear Fuel | doi.org/10.13182/NT85-A33630
Articles are hosted by Taylor and Francis Online.
Two irradiated boiling water reactor fuel rods with breached cladding were exposed to argon and to air at 598 K for 7.56 Ms (2100 h). These tests were conducted to determine fuel swelling and cladding crack propagation under conditions that promote UO2fuel oxidation and to observe the behavior of water-logged breached fuel in an inert gas environment. The two rods were selected for testing after extensive hot cell examination had shown the cladding of both rods to be breached with several centimetres of open cracks; the cracks were characterized in detail before the test. As part of the experiment, the amount of the readily removable water contained in the fuel rods was determined. To oxidize the fuel to a significant level (∼10%), the air in the annealing capsule was replenished approximately daily. The depletion of oxygen available in the air capsule due to fuel oxidation occurred in ∼0.036 Ms (10 h). At the end of the test period, ∼6% of the fuel is estimated to have oxidized. Posttest examination of the rods showed that cladding degradation resulted from swelling due to oxidation of the fuel in the air environment. The cladding degradation was localized and fuel oxidation did not measurably extend beyond the cladding breach. No cladding degradation was measurable in the breached fuel rod tested in argon.