ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
R. Kohli, D. Stahl, V. Pasupathi, A. B. Johnson, Jr., E. R. Gilbert
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 186-197
Nuclear Fuel | doi.org/10.13182/NT85-A33630
Articles are hosted by Taylor and Francis Online.
Two irradiated boiling water reactor fuel rods with breached cladding were exposed to argon and to air at 598 K for 7.56 Ms (2100 h). These tests were conducted to determine fuel swelling and cladding crack propagation under conditions that promote UO2fuel oxidation and to observe the behavior of water-logged breached fuel in an inert gas environment. The two rods were selected for testing after extensive hot cell examination had shown the cladding of both rods to be breached with several centimetres of open cracks; the cracks were characterized in detail before the test. As part of the experiment, the amount of the readily removable water contained in the fuel rods was determined. To oxidize the fuel to a significant level (∼10%), the air in the annealing capsule was replenished approximately daily. The depletion of oxygen available in the air capsule due to fuel oxidation occurred in ∼0.036 Ms (10 h). At the end of the test period, ∼6% of the fuel is estimated to have oxidized. Posttest examination of the rods showed that cladding degradation resulted from swelling due to oxidation of the fuel in the air environment. The cladding degradation was localized and fuel oxidation did not measurably extend beyond the cladding breach. No cladding degradation was measurable in the breached fuel rod tested in argon.