ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Ronald F. Tuttle, Sudarshan K. Loyalka
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 319-326
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33614
Articles are hosted by Taylor and Francis Online.
Nonspherical aerosols can be encountered in postulated severe core damage accidents in nuclear reactors. Aerosol behavior equations are thus modified to account for the departure from spherical shapes by the introduction of a range of “shape factors,which are defined in terms of a specified characteristic dimension or property of the particles. These factors are then introduced into the aerosol behavior equation by modifying the normalized collision kernel. When gravitational effects alone are considered, the kernel is reduced to the gravitational collision kernel, and shape factors for individual particles are typically defined in terms of the dynamic shape factor, which is the ratio of the Stokes settling velocity to the aerodynamic settling velocity, and the collision shape factor (the ratio of the collision diameter to the volume equivalent diameter). Due to the inconsistencies and ambiguities of current usage, separate effects information on the collision shape factor is unavailable. A new shape factor, β, is introduced to clarify the definitions and relationships between the collision efficiencies of nonspherical and “equivalent” spherical particles. The shape factor, β, can be obtained from mechanistic considerations.