ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Yassin A. Hassan
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 257-267
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33609
Articles are hosted by Taylor and Francis Online.
Three-dimensional fluid and thermal mixing analysis of a full-scale cold leg and downcomer of a Babcock & Wilcox-designed pressurized water reactor is performed. The impetus of the present study is to provide an accurate estimation of the local fluid temperatures in the cold leg and downcomer when the cold high-pressure safety fluid is injected into the cold leg carrying a hot fluid. Such temperature predictions are needed in resolving the so-called pressurized thermal shock issue in the nuclear industry. The unique feature of this study is the use of the accurate mass-flow-weighted skew-upwind scheme to approximate the convective transport terms in the COMMIX-1A code approximation of the fluid energy equation. This new scheme is shown to considerably reduce the false diffusion that plagued multidimensional thermal-hydraulic applications. The computed fluid velocity patterns and temperature predictions have shown similar behavior to the flow visualization and temperature field measurements in scaled experiments.