ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Yassin A. Hassan
Nuclear Technology | Volume 69 | Number 3 | June 1985 | Pages 257-267
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33609
Articles are hosted by Taylor and Francis Online.
Three-dimensional fluid and thermal mixing analysis of a full-scale cold leg and downcomer of a Babcock & Wilcox-designed pressurized water reactor is performed. The impetus of the present study is to provide an accurate estimation of the local fluid temperatures in the cold leg and downcomer when the cold high-pressure safety fluid is injected into the cold leg carrying a hot fluid. Such temperature predictions are needed in resolving the so-called pressurized thermal shock issue in the nuclear industry. The unique feature of this study is the use of the accurate mass-flow-weighted skew-upwind scheme to approximate the convective transport terms in the COMMIX-1A code approximation of the fluid energy equation. This new scheme is shown to considerably reduce the false diffusion that plagued multidimensional thermal-hydraulic applications. The computed fluid velocity patterns and temperature predictions have shown similar behavior to the flow visualization and temperature field measurements in scaled experiments.