ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Werner Maschek, Andrei Rineiski, Michael Flad, Koji Morita, Pierre Coste
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 186-201
Technical Paper | Accelerators | doi.org/10.13182/NT03-A3360
Articles are hosted by Taylor and Francis Online.
So-called dedicated fuels will be utilized to obtain maximum transmutation and incineration rates of minor actinides (MAs) in accelerator-driven systems (ADSs). These fuels are characterized by a high-MA content and the lack of the classical fertile materials such as 238U or 232Th. Dedicated fuels still have to be developed; however, programs are under way for their fabrication, irradiation, and testing. In Europe, mainly the oxide route is investigated and developed. A dedicated core will contain multiple "critical" fuel masses, resulting in a certain recriticality potential under core degradation conditions. The use of dedicated fuels may also lead to strong deterioration of the safety parameters of the reactor core, such as, e.g., the void worth, Doppler or the kinetics quantities, neutron generation time, and eff. Critical reactors with this kind of fuel might encounter safety problems, especially under severe accident conditions. For ADSs, it is assumed that because of the subcriticality of the system, the poor safety features of such fuels could be coped with. Analyses reveal some safety problems for ADSs with dedicated fuels. Additional inherent and passive safety measures are proposed to achieve the required safety level. A safety strategy along the lines of a defense approach is presented where these measures can be integrated. The ultimate goal of these measures is to eliminate any mechanistic severe accident scenario and the potential for energetics.