ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
William J. Kovacs, Karl Bongartz, Dan T. Goodin
Nuclear Technology | Volume 68 | Number 3 | March 1985 | Pages 344-354
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT85-A33580
Articles are hosted by Taylor and Francis Online.
A Triso-coated particle stress model was used to describe pressure vessel failure in high-temperature gas-cooled reactor fuel particles. Two separate failure modes were treated, namely, category I, which applies to standard particles characterized by a load-bearing silicon carbide (SiC) layer and instantaneous pyrolytic carbon (PyC) and SiC failure, and category II, which applies to particles with a defective SiC layer incapable of supporting a tensile load. Closed-form solutions, which describe PyC and SiC coating layer stresses as a function of irradiation conditions and particle geometry, were adapted to Monte Carlo calculational routines. The PyC and SiC stresses were calculated for a large number (104 to 106) of particles, and particle failure was predicted to occur when the calculated coating layer tensile stresses exceeded either the SiC (category I failure) or PyC (category II failure) fracture lengths. Model predictions are generally consistent with irradiation test results and serve as a useful guide for particle design optimization studies and in-core fuel performance evaluations.