ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Hugues W. Bonin, Alexander Sesonske
Nuclear Technology | Volume 68 | Number 3 | March 1985 | Pages 319-335
Technical Paper | Fuel Cycle | doi.org/10.13182/NT85-A33578
Articles are hosted by Taylor and Francis Online.
The optimization of in-core fuel management for a thorium-fueled Canada deuterium uranium (CANDU) nuclear reactor was investigated by minimizing the total refueling rate at equilibrium with respect to criticality and power-peaking constraints. The computer code ASTERIX was written to solve the optimization problem, using a steepest descent technique with a moderate number of diffusion calculations required. Because of the presence of 233Pa in the fuel, the diffusion calculations are nonlinear and are solved numerically by the specially written program CALYPSO. Simulation was performed on simple models of a CANDU 600-MW reactor, with the core divided into two or four refueling zones. Results indicated that the optimization method investigated did work out well and that potential savings of up to 14% in the feed rate are possible for the self-sufficient equilibrium thorium cycle fuel, with an optimum refueling rate of 1.372 × 10−4 MgHE (heavy elements)/MWd. Sensitivity of the optimal discharge burnups to the value of the power-peaking constraint was significant.