ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
P. Thomas, K. Nester
Nuclear Technology | Volume 68 | Number 3 | March 1985 | Pages 293-310
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33576
Articles are hosted by Taylor and Francis Online.
Experiments were carried out at the Karlsruhe Nuclear Research Center to determine the atmospheric diffusion of pollutants. The influence on atmospheric diffusion by conditions specific to the site was investigated. For this purpose, tritiated water and two different halogenated hydrocarbons are emitted at heights of 60 and 100 m; their local concentration distribution is measured at ground level downwind of the source. The relevant meteorological data are measured at a 200-m-high tower. For evaluation of the measurements the diffusion is assumed to be a steady-state process. A twodimensional Gaussian distribution is used as the theoretical approximation of the concentrations. The dependence of the dispersion parameters σy and σz on the downwind distance is described by a power function. A least-squares fit is applied to calculate the horizontal and vertical dispersion parameters and the normalized diffusion factor from the measured wind velocity, emission rate, and concentration distribution. The errors in the calculated parameters are also determined. The dispersion parameters evaluated are assigned to stability classes by the measured standard deviation of the vertical wind direction.