ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Ung-Soo Kim, Poong-Hyun Seong
Nuclear Technology | Volume 141 | Number 2 | February 2003 | Pages 157-166
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT03-A3357
Articles are hosted by Taylor and Francis Online.
In this research, lower shifted worth control rods (LSWCRs) are suggested to mitigate problems related to variation of axial power distribution during the power maneuvering of pressurized water reactors. These rods are classified into two types. The first type is "multipurpose control rod," and the other type is "regulating control rod." Two multipurpose control rod banks (LSWCR1, LSWCR2) and three regulating control rod banks (LSWCR5, LSWCR4, LSWCR3) are suggested and developed. The moving characteristics of LSWCRs, related to variation of reactivity and the axial offset (AO), are analyzed, and the operation strategy for LSWCRs is established. Then, an application of LSWCRs for the power maneuvering is performed using the developed strategy, and the reference daily load pattern is 100-50-100%, 2-6-2-14h pattern that is appropriate for operation of the electric grid in Korea. From the results, it is shown that the combinative use of multipurpose control rods (LSWCR1, LSWCR2) makes it possible to control the AO within the target band during the power maneuvering. Also, the results show that the power maneuvering without reactivity compensation by change of boron concentration is accomplished, and consequently the minimization of boron concentration change is possible.