ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ian J. Hastings, Elio Mizzan, Alan M. Ross, John R. Kelm, Real J. Chenier, D. H. Rose, J. Novak
Nuclear Technology | Volume 68 | Number 1 | January 1985 | Pages 40-47
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT85-A33565
Articles are hosted by Taylor and Francis Online.
Fragments of UO2 fuel pellets extracted from irradiated elements were heated in air at 175 to 275 °C for times up to 800 h. Unirradiated pellets and fragments were studied for comparison. Pretest burnup of the irradiated fuel was typically 190 MW-h/kgU (7900 MWd per tonne of uranium) at a maximum linear power of 45 kW/m. The fuel had been discharged for 1 to 3 yr. The maximum weight gain was at 275 °C, ∼4% in 70 h, indicating 100% conversion to U3O8. The activation energy for the oxidation process at 175 to 275 °C was 130 ± 10 kJ/mol. There was a strong effect of prior irradiation on oxidation rate; the weight gain at 250 °C was about a factor of 6 greater in irradiated compared with unirradiated fuel. There was also an effect of fragment size on oxidation rate. Also, weight gains of fragments from a naturally defected element were less than those for fragments from intact fuel, consistent with prior oxidation in the defected state.