ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Charles W. Bagnal, Jr., Gerard P. Cavanaugh, Robert P. Harris, Regis A. Matzie, Laszlo B. Tarko
Nuclear Technology | Volume 68 | Number 1 | January 1985 | Pages 7-17
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33562
Articles are hosted by Taylor and Francis Online.
Fuel management and core periphery modifications are examined for slowing pressurized water reactor (PWR) pressure vessel embrittlement by reducing the incident fast flux to the vessel Such strategies can help to mitigate the consequences of pressurized thermal shock, a current licensing concern. For most operating PWRs, a factor of 2 reduction in fast flux to the reactor vessel critical welds can be achieved with little or no penalty in power peaking (3% or less), which implies only a small degradation in thermal margin. This can be accomplished with low leakage fuel management, which places twice-burned fuel near these welds. To achieve higher reduction factors, materials with good fast neutron attenuation properties must be used in conjunction with low leakage fuel management. For example, a reduction factor of 3 implies a limited use of dummy stainless steel assemblies (with an associated increase in power peaking of at least 8%) or the use of stainless steel patches between the core and the vessel In general, a factor of 3 reduction in fast flux is a practical upper limit to what can be reasonably achieved without significant degradation of thermal margin. A factor of 5 reduction may be possible in some cases, but would require the liberal use of dummy assemblies and/or stainless steel patches; a fast flux reduction by a factor of >5 would most likely require power derating.