ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
K. Linga Murty
Nuclear Technology | Volume 67 | Number 1 | October 1984 | Pages 124-131
Technical Paper | Material | doi.org/10.13182/NT84-A33535
Articles are hosted by Taylor and Francis Online.
Improvements in both the yield strength and ductility were noted in mild steel at elevated temperatures (≳315 K) following neutron irradiation to 2 × 1022 n/m2, in contrast to hitherto observed radiation hardening and embrittlement. This beneficial effect was shown to be due to the interaction of interstitial impurities with radiation-produced defects resulting in reduced concentration of interstitial carbon and nitrogen in solution, and thus blue brittleness is suppressed following radiation exposure. Consequently, the energy absorbed by the irradiated material (a measure of toughness) improved at these temperatures. In the temperature range examined, namely from 300 to 550 K, Lüders strain increased following neutron irradiation. While the Lüders strain of unirradiated material exhibited a peak at ∼460 K due to dynamic strain aging, it decreased continuously with test temperature following neutron irradiation. Radiation exposure resulted in decreased rates of work hardening at all of the test temperatures. Peaks in the temperature dependence of the work-hardening parameter are noted for the unirradiated material in the serrated flow regime. Thermal recovery of radiation damage resulted in increased rates of work hardening at elevated temperatures.