ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Toshiaki Ohe
Nuclear Technology | Volume 67 | Number 1 | October 1984 | Pages 92-101
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33532
Articles are hosted by Taylor and Francis Online.
A method has been developed to predict sorption reactions of radionuclides on granitoid rock. This method is based on simultaneous ion exchange reactions for both radionuclide and competing cations in solution. Several batch sorption experiments using crushed and sieved rocks showed the Rothmund and Kornfeld type of equation, which determined exchange constants of cesium, cobalt, manganese, strontium, and competing major cations in natural water. Sorption data in three synthetic solutions of 1 N calcium chloride, groundwater, and seawater indicated that simultaneous ion exchange reactions predict mechanisms for all cations in solution. A simple method is proposed to predict a sorption isotherm of radionuclide in the presence of competing cations, such as potassium, sodium, and manganese.