ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Toshiaki Ohe
Nuclear Technology | Volume 67 | Number 1 | October 1984 | Pages 92-101
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33532
Articles are hosted by Taylor and Francis Online.
A method has been developed to predict sorption reactions of radionuclides on granitoid rock. This method is based on simultaneous ion exchange reactions for both radionuclide and competing cations in solution. Several batch sorption experiments using crushed and sieved rocks showed the Rothmund and Kornfeld type of equation, which determined exchange constants of cesium, cobalt, manganese, strontium, and competing major cations in natural water. Sorption data in three synthetic solutions of 1 N calcium chloride, groundwater, and seawater indicated that simultaneous ion exchange reactions predict mechanisms for all cations in solution. A simple method is proposed to predict a sorption isotherm of radionuclide in the presence of competing cations, such as potassium, sodium, and manganese.