ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Randall R. Nason*
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 333-340
Technical Paper | Technique | doi.org/10.13182/NT84-A33521
Articles are hosted by Taylor and Francis Online.
The adjoint technique has been applied to accurately and economically predict the response of a portal monitor to photon emissions below ∼1.5 MeV, thus encompassing those sources generally of interest in nuclear safeguards applications. The adjoint source was defined as the product of the total attenuation coefficient and an experimentally determined efficiency factor, which accounts for the performance characteristics of the signal-processing system. The efficiency factor was determined from a combination of data obtained from a single NE-102 scintillator and results from corresponding three-dimensional forward MORSE calculations. A prototype walk-through portal was then fabricated with four identical NE-102 scintillators. Adjoint MORSE calculations were performed to obtain net count rates for various sources within this portal. These results were compared to experimental data and were found to agree to well within 10%. The photon response within the portal detection volume was then characterized by a series of MORSE calculations.