ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Randall R. Nason*
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 333-340
Technical Paper | Technique | doi.org/10.13182/NT84-A33521
Articles are hosted by Taylor and Francis Online.
The adjoint technique has been applied to accurately and economically predict the response of a portal monitor to photon emissions below ∼1.5 MeV, thus encompassing those sources generally of interest in nuclear safeguards applications. The adjoint source was defined as the product of the total attenuation coefficient and an experimentally determined efficiency factor, which accounts for the performance characteristics of the signal-processing system. The efficiency factor was determined from a combination of data obtained from a single NE-102 scintillator and results from corresponding three-dimensional forward MORSE calculations. A prototype walk-through portal was then fabricated with four identical NE-102 scintillators. Adjoint MORSE calculations were performed to obtain net count rates for various sources within this portal. These results were compared to experimental data and were found to agree to well within 10%. The photon response within the portal detection volume was then characterized by a series of MORSE calculations.