ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Vincent P. Manno, Michael W. Golay
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 302-311
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33518
Articles are hosted by Taylor and Francis Online.
The principal developmental focus of the LIMIT code is the ability to model hydrogen transport accurately in reactor containments. The program is capable of treating rapid two-phase dominated blowdown transients, slower mixing events in which diffusional transport is important, and lumped or nodal multicompartment analysis. The code’s features include versatile multidimensional geometry options and models of ancillary equipment including solid heat sinks and mass and energy sources. The program is applied to a number of pertinent problems including continuum analysis of a hydrogen/water blowdown, simulation of experimental tests performed at the Battelle-Frankfurt Institute and the Hanford Engineering Development Laboratory, and lumped parameter studies of connected room problems. The code is shown to be capable of accurately treating a wide range of problems with reasonable computational efficiency. The need for even better efficiency, additional equipment submodels, and further validation are the code’s principal limitations.