ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
S. V. Panno*, P. Soo
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 268-281
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33516
Articles are hosted by Taylor and Francis Online.
A study was conducted to investigate the possible changes in brine chemistry and alkalinity in a highlevel nuclear waste salt repository caused by the interaction of brine with gamma-irradiated host rock. The technique employed involves measurements of the pH and total base in solution of brines made from rock salt irradiated to doses between 107 and 1010 rad under various environmental conditions. The results show that the pH and total base of the brines increase with increasing irradiation of the parent rock salt. Rock salt samples, irradiated in the dry condition at 40°C, produce brines with pH and total base values that increase from 7.25 pH units and 0.14 microequivalent/gram (µeq/g) to upper limits of 9.25 pH units and 1.2 µeq/g, respectively. Samples, irradiated dry at 125 °C, produce brines with pH and total base values that increase to 9.60 pH units and 35 µeq/g, respectively. The increase in total base in the aforementioned brines is indicative of F-center formation (at 40°C) and sodium-colloid formation (at 125°C) in the salt. Saturated brines irradiated in the presence of rock salt at 125 °C, however, became progressively more acidic while brines made from the adjacent rock salt became increasingly basic. With respect to the high and low pH brines that may be adjacent to waste packages, corrosion resistance of metal containers and the leachability of the waste form may be compromised. Additional data will be required to quantify the behavior of these components under anticipated repository conditions.