ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
S. V. Panno*, P. Soo
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 268-281
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33516
Articles are hosted by Taylor and Francis Online.
A study was conducted to investigate the possible changes in brine chemistry and alkalinity in a highlevel nuclear waste salt repository caused by the interaction of brine with gamma-irradiated host rock. The technique employed involves measurements of the pH and total base in solution of brines made from rock salt irradiated to doses between 107 and 1010 rad under various environmental conditions. The results show that the pH and total base of the brines increase with increasing irradiation of the parent rock salt. Rock salt samples, irradiated in the dry condition at 40°C, produce brines with pH and total base values that increase from 7.25 pH units and 0.14 microequivalent/gram (µeq/g) to upper limits of 9.25 pH units and 1.2 µeq/g, respectively. Samples, irradiated dry at 125 °C, produce brines with pH and total base values that increase to 9.60 pH units and 35 µeq/g, respectively. The increase in total base in the aforementioned brines is indicative of F-center formation (at 40°C) and sodium-colloid formation (at 125°C) in the salt. Saturated brines irradiated in the presence of rock salt at 125 °C, however, became progressively more acidic while brines made from the adjacent rock salt became increasingly basic. With respect to the high and low pH brines that may be adjacent to waste packages, corrosion resistance of metal containers and the leachability of the waste form may be compromised. Additional data will be required to quantify the behavior of these components under anticipated repository conditions.