ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Naohito Uetake, Yoshihiro Ozawa, Makoto Kikuchi
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 221-227
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33512
Articles are hosted by Taylor and Francis Online.
A low-temperature waste glass synthesis method for reducing the volatilization of radioactive high-level liquid waste (HLLW) components and the corrosion of furnace materials has been developed on a laboratory scale. This method is a sol-gel method, using the gel formation reaction of a sodium silicate solution in combination with calcination and sintering processes. Experiments to investigate the method’s feasibility were conducted with nonradioactive simulated HLLW, and the glass obtained was characterized by infrared and Mössbauer spectroscopy. It was concluded that the radioactive waste glass synthesis was achieved by calcination at ∼600°C.