ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
R. E. Williford
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 208-220
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT84-A33511
Articles are hosted by Taylor and Francis Online.
Uranium dioxide fuel pellets crack during the irradiation of light water reactor fuel rods, enhancing fuel/cladding mechanical interactions and creating asymmetric fuel rod internal geometries that result in nonlinear mechanical behavior. A formulation analogous to a constitutive equation is developed to describe the nonlinear load-displacement behavior of cracked fuel. Cladding elastic ridge heights are computed via a simple shell analysis during the iterative solution of the cracked-fuel constitutive equation. Results indicate that maximum cladding ridge heights do not necessarily occur at the smallest initial fuel/cladding gap size, and that the mode of cladding deformation depends on gap size and rod power. The method can be extended to more detailed cladding deformation analyses, and is useful for estimating the cladding stresses needed for fuel rod failure analyses.