ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. E. Williford
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 208-220
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT84-A33511
Articles are hosted by Taylor and Francis Online.
Uranium dioxide fuel pellets crack during the irradiation of light water reactor fuel rods, enhancing fuel/cladding mechanical interactions and creating asymmetric fuel rod internal geometries that result in nonlinear mechanical behavior. A formulation analogous to a constitutive equation is developed to describe the nonlinear load-displacement behavior of cracked fuel. Cladding elastic ridge heights are computed via a simple shell analysis during the iterative solution of the cracked-fuel constitutive equation. Results indicate that maximum cladding ridge heights do not necessarily occur at the smallest initial fuel/cladding gap size, and that the mode of cladding deformation depends on gap size and rod power. The method can be extended to more detailed cladding deformation analyses, and is useful for estimating the cladding stresses needed for fuel rod failure analyses.