ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Daniel Cubicciotti, Bal Raj Sehgal
Nuclear Technology | Volume 67 | Number 2 | November 1984 | Pages 191-207
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33510
Articles are hosted by Taylor and Francis Online.
The vaporization of core materials other than fission products during a postulated severe light water reactor accident is treated by chemical thermodynamics. The core materials considered were (a) the control rod materials, silver, cadmium, and indium; (b) the structural materials, iron, chromium, nickel, and manganese; (c) cladding material, zirconium and tin; and (d) the fuel, uranium oxide. Thermodynamic data employed for the solid and gaseous elements and oxides were based on measurements, while the data for the gaseous hydroxides were generally based on estimates from literature. Thermodynamic criteria were derived to determine whether the metallic element or the solid oxide was the stable condensed phase for the accident environmental conditions. Equations for the partial pressures for all gaseous species were also derived. The relevant environmental conditions were provided by the pressurized water reactor and boiling water reactor heat-up thermal-hydraulic codes. The volatilities of the core materials were found to decrease roughly in the following order: cadmium, indium, tin, iron, silver, manganese, nickel, chromium, uranium, and zirconium. Cadmium and indium would provide the largest mass of core material that can be transported out of the core.