ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Humberto E. Garcia, Richard B. Vilim
Nuclear Technology | Volume 141 | Number 1 | January 2003 | Pages 69-77
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3351
Articles are hosted by Taylor and Francis Online.
Two basic approaches can be mentioned to model physical systems. One approach derives a model structure from the known physical laws. However, obtaining a model with the required fidelity may be difficult if the system is not well understood. A second approach is to employ a black-box structure to learn the implicit input-output relationships from measurements in which no particular attention is paid to modeling the underlying processes. A method that draws on the respective strengths of each of these two approaches is described. The technique integrates known first-principles knowledge derived from physical modeling with measured input-output mappings derived from neural processing to produce a computer model of a dynamical process. The technique is used to detect operational changes of mechanical equipment by statistically comparing, using a likelihood test, the predicted model output for the given measured input with the actual process output. Experimental results with a peristaltic pump are presented.