ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Gary L. Catchen, Amos Notea, Brian C. Campbell
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 463-472
Technical Paper | Analyse | doi.org/10.13182/NT84-A33503
Articles are hosted by Taylor and Francis Online.
A highly collimated mobile gamma-ray spectrometer constructed by EG&G Idaho has been calibrated for full-energy peak efficiency. This spectrometer contains a high resolution intrinsic germanium detector, and it is designed for making activity measurements inside reactor containment buildings in high radiation fields. Peak efficiencies were determined for point sources positioned on and off the detector-collimator axis over an energy range from 80 to 2800 keV. The off-axis distributions were integrated to give the isotropic disk source efficiencies. These results were compared to those obtained from directly measuring a 24Na-doped aluminum foil “disk.” Theoretical disk source efficiencies were calculated using the point kernel approach. These results were normalized to the on-axis point source efficiencies. The procedure is self-consistent but it requires more detailed measurements in the future in order to provide accurate results. Once the measurements are made, however, the spectrometer system can then be used to accurately assay arbitrary distributions of surface activities. The method is also well suited for use in collimator design because leakage effects can be directly calculated.