ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Gary L. Catchen, Amos Notea, Brian C. Campbell
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 463-472
Technical Paper | Analyse | doi.org/10.13182/NT84-A33503
Articles are hosted by Taylor and Francis Online.
A highly collimated mobile gamma-ray spectrometer constructed by EG&G Idaho has been calibrated for full-energy peak efficiency. This spectrometer contains a high resolution intrinsic germanium detector, and it is designed for making activity measurements inside reactor containment buildings in high radiation fields. Peak efficiencies were determined for point sources positioned on and off the detector-collimator axis over an energy range from 80 to 2800 keV. The off-axis distributions were integrated to give the isotropic disk source efficiencies. These results were compared to those obtained from directly measuring a 24Na-doped aluminum foil “disk.” Theoretical disk source efficiencies were calculated using the point kernel approach. These results were normalized to the on-axis point source efficiencies. The procedure is self-consistent but it requires more detailed measurements in the future in order to provide accurate results. Once the measurements are made, however, the spectrometer system can then be used to accurately assay arbitrary distributions of surface activities. The method is also well suited for use in collimator design because leakage effects can be directly calculated.