ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Katsuhiro Ohkawa, Richard T. Lahey, Jr.
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 437-451
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33501
Articles are hosted by Taylor and Francis Online.
A gamma-ray scattering densitometer was developed for the nonintrusive measurement of the local void fraction in complex geometries. The densitometer system consisted of a shielded 137Cs photon source, a NaI photon detector, and a collimator system that defined the scattering volume within which the photons were scattered. An analytical model for the scattering events was developed. This model took the form of an integral equation, which expressed the measured counting rate in terms of the geometric configuration, local density, and the nuclear properties of the scattering volume. An interactive-graphics-based numerical procedure for inversion of the integral equation was developed. Results of two-phase flow measurements in a concentric annulus are given.