ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
Takashi Murakami, Tsunetaka Banba
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 419-428
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33499
Articles are hosted by Taylor and Francis Online.
The Soxhlet-type leaching test was carried out on borosilicate glass that contained 14 wt% simulated high-level waste. The morphology, texture, composition, and crystallography of the surface layers that formed were examined using optical microscopy, scanning electron microscopy, electron probe microanalysis, and analytical electron microscopy. Four surface layers, made up of 100- to 1000-Å crystalline and noncrystalline particles, formed on the glass. The elements found were classified into three groups based on their behavior in the surface layers. Group I contained the alkali metals, such as sodium, potassium, and cesium, which were strongly depleted from the layers as a result of leaching. Group II contained elements such as manganese, iron, nickel, zirconium, lanthanum, cerium, and neodymium, which were more concentrated in the surface layers than in the unleached part of the specimen, probably because the layers had shrunk during the drying process. Group III contained the elements which behaved inconsistently as a group: Some, such as calcium, silicon, and aluminum, were poor in the layers; magnesium and barium were present, but had concentration profiles that differed from those of Group II. Only one crystalline phase, a sheet silicate, formed in the layers. It had the expected chemical form, (Ca, Ba, La, Ce, Nd)x(Mn, Fe, Zr, Mg, Ni, Al)y(Si, Al)z(O, OH)m; its formation probably influenced the leaching mechanisms.