ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
James M. Wu, Chun-Fa Chuang
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 381-406
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33496
Articles are hosted by Taylor and Francis Online.
A flashing droplet model was developed to examine the rupture flow of reactor coolant and its transport phenomena through the stream generator during a steam generator tube rupture accident. The model includes flashing flow; droplet formation; droplet removal by tube bundles, bubble scrubbing, steam separators, and steam dryers; and droplet size change by evaporation and condensation. The calculation follows the actual sequence of events during the accident. Those reactor coolant droplets escaping from the steam generator are used to estimate the radioactivity released into the environment. The steam generator tube rupture accident that occurred at the Prairie Island Plant on October 2, 1979, was studied using the model. The model estimated a release of 204 µCi of 131 I equivalent activity. The U.S. Nuclear Regulatory Commission estimated a 210-µCi release, assuming an iodine partition factor of 1/100 in the steam generator. The model was also used to analyze a hypothetical steam generator tube rupture accident coupled with loss of off-site power in a large 1100-MW(electric) Westinghouse four-loop plant. The model estimated that 45 Ci of 131 I equivalent activity could be released through the relief valves, which were stuck open for 30 min. The number is eight times higher than the estimate from the Westinghouse safety analysis report using a uniform mixing model.