ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
James M. Wu, Chun-Fa Chuang
Nuclear Technology | Volume 67 | Number 3 | December 1984 | Pages 381-406
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33496
Articles are hosted by Taylor and Francis Online.
A flashing droplet model was developed to examine the rupture flow of reactor coolant and its transport phenomena through the stream generator during a steam generator tube rupture accident. The model includes flashing flow; droplet formation; droplet removal by tube bundles, bubble scrubbing, steam separators, and steam dryers; and droplet size change by evaporation and condensation. The calculation follows the actual sequence of events during the accident. Those reactor coolant droplets escaping from the steam generator are used to estimate the radioactivity released into the environment. The steam generator tube rupture accident that occurred at the Prairie Island Plant on October 2, 1979, was studied using the model. The model estimated a release of 204 µCi of 131 I equivalent activity. The U.S. Nuclear Regulatory Commission estimated a 210-µCi release, assuming an iodine partition factor of 1/100 in the steam generator. The model was also used to analyze a hypothetical steam generator tube rupture accident coupled with loss of off-site power in a large 1100-MW(electric) Westinghouse four-loop plant. The model estimated that 45 Ci of 131 I equivalent activity could be released through the relief valves, which were stuck open for 30 min. The number is eight times higher than the estimate from the Westinghouse safety analysis report using a uniform mixing model.