ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Dieter H. Wach
Nuclear Technology | Volume 141 | Number 1 | January 2003 | Pages 54-62
Technical Paper | Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies | doi.org/10.13182/NT03-A3349
Articles are hosted by Taylor and Francis Online.
The recent publication of an international standard on vibration monitoring of reactor internal structures (IEC 61502, standard of the International Electrotechnical Commission) concludes a long-standing development of methods for a new type of nuclear power plant instrumentation and control system. This new system differs from traditional monitoring systems, as it is aimed primarily at early failure detection. Useful information is provided to plant operators, but in particular to the inspection/maintenance personnel. Powerful modern computer technology allows - in an effective manner - correlation and spectral analysis, feature extraction and trending, alert level monitoring, and remote data/signature transmission of dynamic process signals such as neutron noise, vibration signals, pressure noise, etc. The signature and feature trends are stored in a central databank and form a useful reference for assessment of components and systems in case of actual incipient failure development or at the estimated end of the plant lifetime as part of the aging condition assessment measures.The standard IEC 61502 is used as an example for early failure detection and on-line condition monitoring methods based on signature analysis and feature vector monitoring in general. The reasons/background for structuring this particular standard in a mandatory and an optional part as well as the resulting consequences are explained. But emphasis is also placed on demonstration of the principles, i.e., measurement analysis and usefulness of such methods for maintenance and refurbishment strategies. The transferability of the methods is discussed when applied for other tasks, for instance, for condition/aging assessment of process instrumentation.