ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Peter Thomas Hughes, Donald C. Allen
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 661-666
H. Design Codes and Life Prediction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33487
Articles are hosted by Taylor and Francis Online.
The major technical obstacle to construction of a 950°C commercial gas-cooled reactor is the absence of a clear basis for the structural design of the metal components. The basis of existing design rules for temperatures to 800°C has been subject to joint U.S. and Federal Republic of Germany review. The result of this review has been used to define complementary structural design programs. Three significant aspects of structural design at 950°C not directly addressed by existing codes have formed a partial basis for work in the United States. These are: design for flaws, for environmental effects, and for a clearly stated definition of reliability. The importance of these three aspects is illustrated, for example, by the fact that component materials, such as the nickel alloys, exhibit markedly reduced toughness below the operating temperature range after elevated temperature exposure. Such materials also display a susceptibility to major mechanical property changes resulting from carbon uptake or loss to the cooling gas. Also there is no satisfactory precedent from which to define design margins. A structural design program is described, some elements of which are being developed.