ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Peter Thomas Hughes, Donald C. Allen
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 661-666
H. Design Codes and Life Prediction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33487
Articles are hosted by Taylor and Francis Online.
The major technical obstacle to construction of a 950°C commercial gas-cooled reactor is the absence of a clear basis for the structural design of the metal components. The basis of existing design rules for temperatures to 800°C has been subject to joint U.S. and Federal Republic of Germany review. The result of this review has been used to define complementary structural design programs. Three significant aspects of structural design at 950°C not directly addressed by existing codes have formed a partial basis for work in the United States. These are: design for flaws, for environmental effects, and for a clearly stated definition of reliability. The importance of these three aspects is illustrated, for example, by the fact that component materials, such as the nickel alloys, exhibit markedly reduced toughness below the operating temperature range after elevated temperature exposure. Such materials also display a susceptibility to major mechanical property changes resulting from carbon uptake or loss to the cooling gas. Also there is no satisfactory precedent from which to define design margins. A structural design program is described, some elements of which are being developed.