ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
A. Alberman, G. Bley, P. Pépin, P. Soulat
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 639-646
G. Irradiation Behavior | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33485
Articles are hosted by Taylor and Francis Online.
Within the framework of the high-temperature gas-cooled reactor (HTGR) R&D agreement with GA Technologies, Inc., the Centre d’Etudes Nucléaires de Saclay investigated the transition temperature shift of the liner steel exposed to (thermal) neutrons. The steel was ferritic A537 (1.32% manganese, 0.26% copper, 0.26% silicon, 0.21% nickel, and 0.14% chromium). The specimens were irradiated in the French EL3 heavy water research reactor in an area where the neutron spectrum was comparable to that occurring in front of the HTGR core cavity liner:Φth/Φƒ ∼ 1000 . The temperature was 60 °C during the irradiations. For theoretical purposes, two irradiations were carried out at two different fluences. In addition, some specimens were cadmium plated to examine the effect of fast neutrons. Charpy impact tests were performed at Saclay with an instrumented impact device. The results show that current models overestimate the thermal neutron effect by a factor of 3.