ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 630-638
G. Irradiation Behavior | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33484
Articles are hosted by Taylor and Francis Online.
The effect of neutron irradiation on hightemperature tensile and creep properties of austenitic heat-resistant alloys was studied. The effect, which appeared in the loss of ductility at elevated temperatures, was caused by helium produced by a nuclear transmutation reaction of thermal neutrons with boron and nickel in the alloy. The fracture mode was characterized by intergranular cracking. The tensile properties were determined at 700 to 1000°C after irradiation up to a maximum thermal neutron fluence of 1.2 x 1025 n/m2. Creep tests were made at 900°C after irradiation to 6.6 x 1024 and 7.5 x 1024 n/m2. The tensile ductility was reduced with increasing deformation temperature, due primarily to the loss of necking elongation. In the postirradiation creep tests, significant reduction in rupture life also occurred. In both tensile and creep properties, the iron-base alloys were superior to the nickel-rich alloys, and, in particular, a heat of Incoloy alloy 800 showed exceptionally high resistance to irradiation.