ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
August Mühlratzer, Hans Zeilinger, Hans Günter Esser
Nuclear Technology | Volume 66 | Number 3 | September 1984 | Pages 570-577
F. Hydrogen and Tritium Permeation | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33479
Articles are hosted by Taylor and Francis Online.
An important demand with respect to the operability of a nuclear process heat system, such as the prototype plant for nuclear process heat, is the complete retention of tritium. A significant contribution to the solution of this problem is expected by a drastic reduction of the permeation of hydrogen and tritium through the heat exchanger walls. The most promising way to prevent this permeation appears to be to coat the parts concerned, which are made of high-temperature alloys, with oxide layers. Through preoxidation under well-defined conditions, it should be possible to obtain oxide layers that promise a lasting inhibition of the hydrogen and tritium permeation under process conditions. The process used to obtain permeation-resistant oxide layers on the high-temperature alloys in question—in particular on Hastelloy-X—is characterized by the application of a low oxidation potential, so that Cr2O3 layers will form. Steam at low pressure in argon with and without the addition of hydrogen is used as the oxidizing agent. Furthermore, the formation of dense Cr2O3 layers is conditional on a suitable pretreatment. The best layers, with respect to the inhibition of permeation and to stability in the steam reforming process gas, were obtained by preoxidizing at 1273 K under special thermocycling conditions. They reduced the permeation by a factor of over 2000, which increased to over 3000 under the effects of a process gas exposure. Chemical vapor deposition Al2O3 coatings were tested to see if they would be suitable as alternatives. High inhibiting factors (over 1000) were obtained with Al2O3 coatings deposited on preoxidized substrates.