ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Aleksandra Czyrska-Filemonowicz, Philip J. Ennis
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 149-157
B. Structural Characterization of Microstructure and Matallographical Aspect | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33463
Articles are hosted by Taylor and Francis Online.
The effect of carburization on the impact strength and microstructure of the commercial Fe-32 Ni-20 Cr alloy 800H has been investigated in the 20 to 800°C temperature range. The properties and microstructure of test pieces carburized at 850°C for up to 500 h in an argon-10 vol% methane atmosphere and of specimens heat treated at 850°C in an inert atmosphere for the same times were compared. The results showed that aging at 850°C reduced the impact strength at 20 to 800°C. With an increasing degree of carburization, the impact strength was progressively reduced to ∼50 J at a bulk carbon content of 0.6 wt%. Heat treatment after carburization caused a further decrease in impact strength as the depth of carbon penetration increased. Microstructural examination by optical and transmission electron microscopy (TEM) of broken test specimens showed precipitation of M23C6 carbides on grain and twin boundaries and intragranular fine precipitation of TiC and M23C6 as well as the presence of primary titanium carbonitrides. The TEM investigations using extraction replica and thin foil techniques established that the M23C6 carbides at grain boundaries retained a crystallographic orientation to one grain and grew into the adjacent grain. Lamellae of M23C6 carbides precipitated on noncoherent twin boundaries grew into the grain parallel to the twin plane, whereas M23C6 on coherent twin planes grew as plates along the twinning plane.