ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Deep Isolation asks states to include waste disposal in their nuclear strategy
Nuclear waste disposal technology company Deep Isolation is asking that the National Association of State Energy Officials (NASEO) consider how spent nuclear fuel and radioactive waste will be managed under its strategy for developing advanced nuclear power projects in participating states.
Helmut Hoven, Karl Koizlik, Hubertus Nickel
Nuclear Technology | Volume 66 | Number 1 | July 1984 | Pages 127-138
B. Structural Characterization of Microstructure and Matallographical Aspect | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33461
Articles are hosted by Taylor and Francis Online.
Heat-resistant metallic materials for use in high-temperature gas-cooled reactors are nickel- or iron-base, solid-solution-strengthened, or age-hardened alloys. To control the material behavior and to adapt it to realistic load conditions, they have to be tested and characterized. During recent years, interference layer metallography has become an independent characterization procedure as well as an outstanding method for sample preparation for the application of quantitative image analysis to these refractory alloys. The special problems of characterization of nickel- and iron-base alloys that can now be solved by interference layer metallography and its physical backround are reported. Chromatic contrasting and the subsequent phase analysis by way of the example of three common alloys are discussed. Finally, the optimization of interference layer metallography for application in quantitative image analysis is described.