ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Karl G. E. Brenner, Leslie W. Graham
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 404-414
D.Gas/Metal Reaction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33443
Articles are hosted by Taylor and Francis Online.
The main processes of metallic corrosion in primary circuits of advanced high-temperature gas-cooled reactors (HTGRs) at temperatures above 800 °C are oxidation, carburization, and decarburization. These are caused by helium impurity traces of H2O (causing oxidation and decarburization), CO (causing oxidation and carburization), and CH4 (causing carburization). At the very low partial pressures of these impurities, the three processes happen independently, leading to a multitude of corrosion effects, which can be classified in terms of active and passive regimes. In an active regime internal corrosion proceeds rapidly— usually linear with exposure time—thereby severely affecting the structural integrity of the alloy. Passive regimes are characterized by stable oxide layers, which either completely inhibit internal corrosion or limit it to a parabolic dependence with exposure time. These passive and active regimes can be related to absolute partial pressures and partial pressure ratios of the main gaseous impurities, H2O, CO, and CH4. This relationship is illustrated in the form of ternary corrosion maps termed Ternary Environmental Attack diagrams. For each temperature and alloy, such a diagram can be constructed from existing results and used for outlining the likely shape of the passive area for the given temperature. A set of diagrams defines a common passive area for a given alloy over a temperature range, which can be compared with the range of gas compositions expected in the HTGR primary circuit. If it is found that the area representing the expected primary circuit environment is not fully enclosed in the passive corrosion area for commercially available candidate alloys, it will either be necessary to control the primary circuit impurity concentration to such levels that the gas composition is completely shifted into the passive corrosion area, or it will be necessary to develop new alloys with passive corrosion areas big enough to engulf any given primary circuit environment.