ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Willem J. Quadakkers, Hans Schuster
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 383-391
D.Gas/Metal Reaction | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33441
Articles are hosted by Taylor and Francis Online.
In corrosion tests with iron- and nickel-based alloys in simulated cooling gases of the primary circuit of high-temperature gas-cooled reactors (HTGR helium), different effects have been found. The materials may be carburized or decarburized, depending on gas composition, gas supply rate, and test temperature. The surface scales may be composed of oxides and spinels, of mixed oxide/carbide layers, or of carbides, and internal oxidation may become significant. The basic corrosion mechanism could not be explained by the simple use of thermodynamics, but a significant step forward is possible if the kinetics of the different oxidation and carburization reactions are taken into account. The classical stability diagram for chromium, the most important alloying element in these alloys, can then be used for the prediction of the corrosion effects and the corrosion products. Besides the usual description of reaction rates, the kinetics must include the changes in the oxidizing and carburizing potentials at the metallic surface caused by surface scale formation. The influence of some additional alloying elements present in commercial high-temperature alloys can be estimated by comparing their stability with the stability of chromium.