ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Philip J. Ennis, Klaus P. Mohr, Hans Schuster
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 363-368
C.4. Short-Term Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33439
Articles are hosted by Taylor and Francis Online.
Carburization of high-temperature alloys has been frequently observed during exposure to dry high-temperature gas-cooled reactor (HTGR) helium compositions. Therefore, the influence of carburization on mechanical properties of alloys that may be used for HTGR high-temperature components has been studied. In creep rupture tests on high-temperature alloys for up to 20 000 h, the data in air and in various simulated HTGR heliums lie in the same scatterband irrespective of carburization that has been observed in the contaminated helium atmospheres. The dependence of room temperature tensile properties and the impact strength in the 20 to 800 °C range on the carburization level has been measured so that the maximum carbon level for a given room temperature ductility and impact strength could be specified. The results showed that the minimum room temperature elongation fell to below 5% when the carbon content exceeded 0.5 wt% for Incoloy-800H and 0.2 wt% for lnconel-617. At these carbon levels, the alloys have impact strengths (ISO V-notch specimens) of ∼50 J or above at temperatures in the 25 to 800°C range.