ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Philip J. Ennis, Klaus P. Mohr, Hans Schuster
Nuclear Technology | Volume 66 | Number 2 | August 1984 | Pages 363-368
C.4. Short-Term Property | Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material | doi.org/10.13182/NT84-A33439
Articles are hosted by Taylor and Francis Online.
Carburization of high-temperature alloys has been frequently observed during exposure to dry high-temperature gas-cooled reactor (HTGR) helium compositions. Therefore, the influence of carburization on mechanical properties of alloys that may be used for HTGR high-temperature components has been studied. In creep rupture tests on high-temperature alloys for up to 20 000 h, the data in air and in various simulated HTGR heliums lie in the same scatterband irrespective of carburization that has been observed in the contaminated helium atmospheres. The dependence of room temperature tensile properties and the impact strength in the 20 to 800 °C range on the carburization level has been measured so that the maximum carbon level for a given room temperature ductility and impact strength could be specified. The results showed that the minimum room temperature elongation fell to below 5% when the carbon content exceeded 0.5 wt% for Incoloy-800H and 0.2 wt% for lnconel-617. At these carbon levels, the alloys have impact strengths (ISO V-notch specimens) of ∼50 J or above at temperatures in the 25 to 800°C range.