ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
L. Eric Smith, Naeem M. Abdurrahman
Nuclear Technology | Volume 140 | Number 3 | December 2002 | Pages 328-349
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT02-A3343
Articles are hosted by Taylor and Francis Online.
A Monte Carlo study of the neutron slowing-down spectrometry technique for measuring fissile isotopic content in irradiated fuel has been completed. The neutron spectrometer system is characterized in terms of design, slowing-down time relation, isotopic response functions, and assay signals. The nonlinear effect of interrogating neutron self-shielding for a high fissile content fuel is compared to the same parameter for a low fissile content fuel. Simulated assays of 23 different fuel assemblies with a broad range of total fissile mass content (1.3 to 83 wt%) and fissile isotopic ratios are performed and analyzed using two different methods: a linear system model using a least-squares regression analysis and a radial basis neural network. Mean errors using the linear system model for the 23 different fuel types were approximately 20% for 235U and 43% for total plutonium. The radial basis neural network assay signal solutions showed promising results, considerably better than the linear model: 4.9% for 235U, 5.4% for total plutonium, and 0.5% for total fissile content.