ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Daniel Cubicciotti, Bal Raj Sehgal
Nuclear Technology | Volume 65 | Number 2 | May 1984 | Pages 266-291
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33411
Articles are hosted by Taylor and Francis Online.
A methodology based on chemical thermodynamics has been developed to treat the transport of volatile fission products (FPs) through the core and the primary system. The FPs considered are cesium, iodine, tellurium, strontium, and ruthenium, which may pose the major biohazard in postulated severe accidents in light water reactors. The vapor transport of FPs depends on the volatilities of the chemical compounds that are formed in the carrier gas environment in which the FPs are released and transported. Chemically stable forms were evaluated by minimizing the total free energies of the FP/ fuel/gas environment systems. Many gaseous species for each FP were considered and their partial pressures calculated over a range of temperatures (600 to 3000 K), the carrier gas environments (total pressure and ratio of H2/H2O), and the total amount of FPs in the system. It was found that the major dependence of the concentration of the FPs was on the gas temperature, and a model was developed to predict the source of volatile FPs. The model showed that the FPs leaving the core region would condense in the cooler regions of the upper plenum and/or the primary system either on the cold surfaces or be transported further as aerosols.