ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Berthold-Günter Brodda, Erich Richard Merz
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 432-437
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33399
Articles are hosted by Taylor and Francis Online.
The leaching behavior of real Zircaloy cladding hulls, originating from the pressurized water reactor nuclear power station at Obrigheim, Federal Republic of Germany, was investigated using distilled water; nitric acid; sodium hydroxide solution; Portland, alumina, and Sorel cement lye solutions; and a potassium pyrosulfate melt as leachants. The leached fraction was determined for six gamma-emitting isotopes and two actinides. The distributions of the radionuclides in the hulls were determined using a potassium pyrosulfate melt. The results indicated that actinides (plutonium and curium) were concentrated on the surface; the diffusing species (ruthenium and cesium) had high concentrations at the surface but also appeared in the inner portions of the hulls. The distribution of activation products (cobalt and antimony) was very nearly homogeneous throughout the hulls. It is recommended that, prior to reprocessing, the Zircaloy-clad fuel rods be separated from the fuel assembly to facilitate handling of the alpha-contaminated waste stream. The results of this study show that decontamination with nitric acid should be sufficient for further conditioning prior to disposal if conditioning is required.