ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Robert P. Schuman
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 422-431
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33398
Articles are hosted by Taylor and Francis Online.
Two leach-resistant waste forms, a borosilicate glass developed for the high-level waste calcines from reprocessed uranium fuels and iron-enriched basalt, a fused ceramic developed for americium plus plutonium wastes, have been leach tested. The specimens were leached in distilled deionized water and in a saturated salt brine at ∼30°C for 28, 63, and 126 days; one set was leached in a gamma field of ∼104 Gy/h (∼106 rad/h). The specimens were simulated high-level waste forms prepared from inactive ingredients and spiked with 22Na, 60Co, 95Zr-95Nb, 137Cs, 133Ba, 144Ce, and 241Am. The components were melted and heat treated, and specimens were sawed from the solidified material. The gamma field increased the leach rates in water (pH ∼3 after irradiation) typically by a factor of ∼10 and increased the leach rates in salt brine (pH decreased much less during irradiation) by a factor of ∼2. The leach rate of cobalt from glass was about seven times that from iron-enriched basalt. The leach rates usually decreased with increasing leach time. Both waste forms were still leach resistant in irradiated brine at 30°C, <2 µg/cm2·day, and fairly leach resistant in irradiated water at 30°C, <25 µg/cm2·day.