ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Robert A. FJeld, Thomas J. Overcamp
Nuclear Technology | Volume 65 | Number 3 | June 1984 | Pages 402-408
Technical Paper | Nuclear Safety | doi.org/10.13182/NT84-A33395
Articles are hosted by Taylor and Francis Online.
The effect of an electric field on the deposition of a confined aerosol in the presence of ionizing radiation is determined experimentally. A method to determine depositional rate coefficients from measurements of steady-state relative aerosol concentrations in a continuously reinforced chamber is used to obtain experimental data for monodisperse aerosols. Results were obtained for 0.1- and 0.5-µm-diam polystyrene aerosols in a 6000-cm3 container in which the average air absorbed dose rate is 0.22 Gy/h (22 rad/h). Data are obtained in the absence and in the presence of an externally applied electric field of 105 V/m. Significant reductions in aerosol concentration were observed in the chamber upon application of the electric field. In the absence of ionizing radiation, the depositional rate coefficient increases by a factor of 5 to 10. In the presence of ionizing radiation it increases by more than two orders of magnitude. Based on these results, it is concluded that electrical deposition may have potential use as the basis for a technique to reduce concentrations of nuclear aerosols.