ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Edward W. Thornton
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 161-167
Technical Paper | Postaccident Debris Cooling / Technique | doi.org/10.13182/NT84-A33383
Articles are hosted by Taylor and Francis Online.
Decontamination kinetics of a high-gloss polyurethane paint have been investigated using a novel flow cell experiment where the sample was counted in situ during decontamination. The 134Cs, 137Cs, and 90Y decontaminations follow a rate law that can be predicted theoretically for contaminant ion desorption from weakly heterogeneous random surface adsorption sites. Paint surfaces show the same decontamination kinetics after damage by abrasion or ultraviolet irradiation prior to contamination. The systems investigated exhibit Freundlich adsorption isotherm behavior during contamination; this is also characteristic of weakly heterogeneous random surfaces and is very commonly observed in ion adsorption studies at low concentrations.