ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ronald J. Lipinski
Nuclear Technology | Volume 65 | Number 1 | April 1984 | Pages 53-66
Technical Paper | Postaccident Debris Cooling / Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33373
Articles are hosted by Taylor and Francis Online.
A one-dimensional model is developed for boiling heat removal and dryout in particulate debris. The model can be used for predicting the coolability of postaccident debris from a nuclear reactor (either light water or liquid-metal fast breeder). The model includes the effects of both laminar and turbulent flow, two-phase friction, gravity, capillary force, and channels at the top of the debris. The model is applicable to debris on permeable supports with liquid entering the debris bottom or to debris on impermeable plates. In the latter case, the plate can be either adiabatic or cooled on the bottom. The model predicts channel length, the liquid fraction within the debris as a function of elevation, the incipient dryout power, the dry zone thickness as a function of power, and the existence of downward heat removal by boiling (in bottom-cooled debris), all for both uniform and stratified debris.