ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Kazuo Hiramoto, Motoo Aoyama, Masaharu Sakagami, Renzo Takeda
Nuclear Technology | Volume 64 | Number 3 | March 1984 | Pages 243-248
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT84-A33354
Articles are hosted by Taylor and Francis Online.
Low density UO2 fuel pellets of an annular type are used to solve two problems related to high-discharge burnup: the enhancement of the pellet /cladding mechanical interaction, which increases cladding permanent strain, and the increase in average neutron energy due to high enrichment, which changes the core neutronic characteristics. As an example, the design concept is applied to boiling water reactor fuel rods having 57 effective full-power months (EFPMs). The fuel pellet density and the center hole diameter are determined to be 90% TD and 3.0 mm, respectively. The cladding permanent strain of the proposed fuel rod at EFPMs of 57 can be kept lower than the current fuel rod at 36 EFPMs. The EFPMs of 36 and 5 7 correspond respectively to the average discharge burnups of ∼30 and 50 GWd/ tonne U. With an enrichment of 4.5 wt%, the former rods provide the same neutronic characteristics as that of current rods with 2.8 wt% enrichment. Furthermore, power generation cost in the newly designed core is reduced by ∼10% from present cost levels.