ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
William L. Woodruff
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 196-206
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT84-A33342
Articles are hosted by Taylor and Francis Online.
The PARET code, originally developed for the analysis of the SPERT-III experiments for temperatures and pressures typical of power reactors, has now been modified to include a selection of flow instability, departure from nucleate boiling, single- and two-phase heat transfer correlations, and a properties library considered more applicable to the low pressures, temperatures, and flow rates encountered in research reactors. The PARET code provides a coupled thermal, hydraulic, and point kinetics capability with continuous reactivity feedback, and an optional voiding model that estimates the voiding produced by subcooled boiling. This modified code has been adapted for the testing of methods and models and for subsequent use in the analysis of transient behavior in research reactors. Comparisons have been made with the experimental results from the SPERT-I transients, and the agreement with the experimental data is generally quite good. The selection of proper correlations and properties for the range of interest in research reactors was essential to the accuracy of the results. The code has also been applied to the analysis of the International Atomic Energy Agency 10-MW benchmark cores for protected and unprotected transients. The code provides an accurate capability for the analysis of research reactor transients. This modified version of the PARET code is available through the National Energy Software Center.