ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
W. J. MILLS
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 175-185
Technical Paper | Material | doi.org/10.13182/NT84-A33340
Articles are hosted by Taylor and Francis Online.
The Jlc fracture toughness behavior of unirradiated and irradiated Mo steel plate and weldment was characterized by the multiple-specimen R curve technique using 0.577 in.-thick (T), 1-T, and 2-T compact specimens. At room temperature, the unirradiated plate exhibited limited plastic deformation and then failed catastrophically due to unstable crack growth in the transition temperature regime. At 427°C, the Mo base metal failed in a stable crack growth mode, and the Jlc value was twice that obtained at room temperature (145 versus 70 to 90 kJ/m2). The weldment was found to be very resistant to unstable tearing at both 24 and 427°C. Its Jlc response, 175 kJ/m2 at 24°C and 116 kJ/m2 at 427°C, was superior to that of the plate at room temperature, but slightly lower than the base metal toughness at 427°C. The effect of specimen size on the elastic-plastic fracture toughness response of the plate and weldment was characterized at 427°C. The 0.577-T and 2-T plate specimens were found to yield comparable Jlc values; however, the smaller specimen exhibited a steeper R curve and higher tearing modulus. The 0.577-T and 1-T weld specimens yielded comparable fracture toughness properties. The JIc fracture toughness for both the plate and weldment was reduced by ∼20% as a result of irradiation to total fluences of 3.2 × 1021 to 5.0 × 1021 n/cm2. The tearing resistance of the plate was found to be insensitive to irradiation, but a fourfold degradation in the tearing modulus was observed in the irradiated weldment.