ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. C. Searle
Nuclear Technology | Volume 64 | Number 2 | February 1984 | Pages 166-174
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT84-A33339
Articles are hosted by Taylor and Francis Online.
Guidelines have been drawn up for the selection of possible sites for high-level radioactive waste disposal in or on the seabed, which were prepared for the U.K. Department of the Environment. The first step in producing the guidelines was to identify potential failure modes for each disposal option. The guidelines were then developed on the basis of minimizing such failures. No detailed attempt has been made to rank the guidelines, since a proper evaluation of any disposal site must include an analysis of all the interdependent components of the disposal system. However, for disposal within the seabed, the main emphasis is on the geological stability and barrier properties of the disposal medium (the seabed rocks or sediments) and on the engineering feasibility. Among the more important factors are that any site should be well away from areas that are seismically or volcanically active and should avoid areas of high relief where seafloor sediments are unstable. It is also important to show that the area has been geologically stable over a time greater than the timescale of waste decay. The disposal medium should have low water permeability and low coefficients of ionic diffusivity. For on-the-seabed disposal, physical oceanographic considerations are judged most important, but in our present state of knowledge it is much more difficult to determine what, if any, site-specific considerations should apply in this case.